Quantifying the Impacts of Land Surface Modeling on Hub-Height Wind Speed under Different Soil Conditions

Author:

Xia Geng1,Draxl Caroline12,Berg Larry K.3,Cook David4

Affiliation:

1. 1 National Wind Technology Center/ National Renewable Energy Laboratory, Golden, CO 80401 USA

2. 2 Renewable and Sustainable Energy Institute, Boulder, CO 80309, USA

3. 3 Pacific Northwest National Laboratory, Richland, WA 99352 USA

4. 4 333 Waxwing Avenue, Naperville, IL 60565-1243

Abstract

AbstractWe investigate the impact of three land surface models (LSMs) on simulating hub-height wind speed under three different soil regimes (dry, wet, and frozen) to improve understanding of the physics of wind energy forecasts using the Weather Research and Forecasting (WRF) model. A six-day representative period is selected for each soil condition. The simulated wind speed, surface energy budget and soil properties are compared with the observations collected from the second Wind Forecast Improvement Project (WFIP2). For the selected cases, our simulation results suggest that the impact of LSMs on hub-height wind speed are sensitive to the soil states but not so much to the choice of LSM. The simulated hub-height wind speed is in much better agreement with the observations for the dry soil case than the wet and frozen soil cases. Over the dry soil, there is a strong physical connection between the land surface and hub-height wind speed through near-surface turbulent mixing. Over the wet soil, the simulated hub-height wind speed is less impacted by the land surface due to weaker surface fluxes and large-scale synoptic disturbances. Over the frozen soil, the LSM seems to have limited impact on hub-height wind speed variability due to the decoupling of the land surface with the overlying atmosphere. Two main sources of modeling uncertainties are proposed. The first is the insufficient model physics representing the surface energy budget, especially the ground heat flux, and the second is the inaccurate initial soil states such as soil temperature and soil moisture.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3