Seamless Detection of Cutoff Lows and Preexisting Troughs

Author:

Kasuga Satoru1,Honda Meiji2,Ukita Jinro2,Yamane Shozo3,Kawase Hiroaki4,Yamazaki Akira5

Affiliation:

1. 1 Graduate School of Science and Technology, Niigata University, Niigata, Japan.

2. 2 Faculty of Science, Niigata University, Niigata, Japan.

3. 3 Department of Environmental Systems Science, Doshisha University, Kyotanabe, Japan.

4. 4 Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan.

5. 5 Application Laboratory, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan.

Abstract

AbstractWe propose a new scheme based on geopotential height fields to detect cutoff lows starting in the preexisting trough stage. The intensity and scale derived from the proposed scheme will allow for a better understanding of the cutoff low life cycle. These cutoff lows often accompany mesoscale disturbances, causing adverse weather-related events, such as intense torrential rainfall and/or tornadoes. The proposed scheme quantifies the geometric features of a depression from its horizontal height profile. The height slope of a line intersecting the depression bottom and the nearest tangential point (optimal slope) locally indicates the intensity and scale of an isolated depression.The strength of the proposed scheme is that, by removing a local background height slope from a geopotential height field, the cutoff low and its preexisting trough are seamlessly detected as an identical depression. The distribution maps for the detected cutoff lows and preexisting troughs are illustrated along with their intensities, sizes, and local background flows estimated from snapshot height fields. We conducted climatological comparisons of cutoff lows to determine the utility of the proposed scheme.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3