Affiliation:
1. Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA
Abstract
AbstractThe goal of this study is to challenge a large eddy simulation model with a range of observations from a modern field campaign and to develop case studies useful to other modelers. The 2015 Cloud System Evolution in the Trades (CSET) field campaign provided a wealth of in situ and remote sensing observations of subtropical cloud transitions in the summertime Northeast Pacific. Two Lagrangian case studies based on these observations are used to validate the thermodynamic, radiative and microphysical properties of large eddy simulations (LES) of the stratocumulus to cumulus transition. The two cases contrast a relatively fast cloud transition in a clean, initially well-mixed boundary layer vs. a slower transition in an initially decoupled boundary layer with higher aerosol concentrations and stronger mean subsidence. For each case, simulations of two neighboring trajectories sample mesoscale variability and the coherence of the transition in adjacent air masses. In both cases, LES broadly reproduce satellite and aircraft observations of the transition. Simulations of the first case match observations more closely than for the second case, where simulations underestimate cloud cover early in the simulations and overestimate cloud top height later. For the first case, simulated cloud fraction and liquid water path increase if a larger cloud droplet number concentration is prescribed. In the second case, precipitation onset and inversion cloud breakup occurs earlier when the LES domain is chosen large enough to support strong mesoscale organization.
Publisher
American Meteorological Society
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献