Observation Impact Study of an Arctic Cyclone Associated with a Tropopause Polar Vortex (TPV)-Induced Rossby Wave Initiation Event

Author:

Johnson Aaron1,Wang Xuguang1

Affiliation:

1. a School of Meteorology, University of Oklahoma, Norman, Oklahoma

Abstract

AbstractA case study characterized by Arctic cyclogenesis following a tropopause polar vortex (TPV)-induced Rossby wave initiation event is used to better understand how well existing observations constrain analyses of processes influencing Arctic cyclone predictive skill. Complementary techniques of observation system experiments (OSE) and ensemble sensitivity analysis (ESA) are used to investigate the impacts of existing observation networks on predictions for this case. The ESA reveals that the large-scale Rossby wave structure is correlated with both Arctic cyclone track and amplitude errors. The ensemble analyses of midlevel moisture in the warm conveyor belt region were correlated with forecast cyclone amplitude, but this feature was poorly sampled in existing observations. There is also a sensitivity of Arctic cyclone forecast amplitude error to low-level temperature in the air mass of the cyclogenesis region at analysis time and a sensitivity of Arctic cyclone forecast track error to low-level temperature in the region of an Arctic cold front and a coastal front at the analysis time. The OSEs for this case reveal that Arctic cyclone track error is more sensitive to denial of existing observations than amplitude error. While lower-level (below 700 hPa) observations had the greatest impact on the surface cyclone during the early stages, upper-level (above 500 hPa) observations had the dominant impact during its later evolution. Denying temperature from just three well-placed sondes substantially increased track error by degrading analyses of the TPV amplitude and its interaction with the waveguide and developing Rossby wave packet. These results are encouraging for further Arctic cyclone forecast improvements through addition of even a small number of well-placed observations.

Funder

Office of Naval Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3