Affiliation:
1. NOAA Physical Sciences Laboratory, Boulder, Colorado
Abstract
AbstractProlonged periods (e.g., several days or more) of heavy precipitation can result in sustained high-impact flooding. Herein, an investigation of long-duration heavy precipitation events (HPEs), defined as periods comprising ≥ 3 days with precipitation exceeding the climatological 95th percentile, is conducted for 1979–2019 for the U.S. West Coast, specifically Northern California. An objective flow-based categorization method is applied to identify principal large-scale flow patterns for the events. Four categories are identified and examined through composite analyses and case studies. Two of the categories are characterized by a strong zonal jet stream over the eastern North Pacific, while the other two are characterized by atmospheric blocking over the central North Pacific and the Bering Sea–Alaska region, respectively. The composites and case studies demonstrate that the flow patterns for the HPEs tend to remain in place for several days, maintaining strong baroclinicity and promoting occurrences of multiple cyclones in rapid succession near the West Coast. The successive cyclones result in persistent water vapor flux and forcing for ascent over Northern California, sustaining heavy precipitation. For the zonal jet patterns, cyclones affecting the West Coast tend to occur in the poleward jet exit region in association with cyclonic Rossby wave breaking. For the blocking patterns, cyclones tend to occur in association with anticyclonic Rossby wave breaking on the downstream flank of the block. For Bering Sea–Alaska blocking cases, cyclones can move into this region in conjunction with cyclonically breaking waves that extend into the eastern North Pacific from the upstream flank of the block.
Publisher
American Meteorological Society
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献