A Comparison of Arctic and Atlantic Cyclone Predictability

Author:

Capute Peyton K.1,Torn Ryan D.1

Affiliation:

1. a Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Abstract

Abstract Arctic cyclones (ACs) are synoptic-scale features that can be associated with strong, intense winds over the Arctic Ocean region for long periods of time, potentially leading to rapid declines of sea ice during the summer. As a consequence, sea ice predictions may rely on the predictability of cyclone-related wind speed and direction, which critically depends on the cyclone track and intensity. Despite this, there are relatively few studies that have documented the predictability of ACs during the summer, beyond a few case studies, nor has there been an extensive comparison of whether these cyclones are more or less predictable relative to comparable midlatitude cyclones, which have been studied in greater detail. The goal of this study is to document the practical predictability of AC position and intensity forecasts over 100 cases and compare it with 89 Atlantic Ocean basin midlatitude cyclones using the Global Ensemble Forecast System (GEFS) Reforecast V2. This dataset contains 11-member ensemble forecasts initialized daily from 1985 to the present using a fixed model. In this study, forecasts initialized 1 and 3 days prior to the cyclone development time are compared, where predictability is defined as the ensemble mean root-mean-square error and ensemble standard deviation (SD). Although Atlantic basin cyclone tracks are characterized by higher predictability relative to comparable ACs, intensity predictability is higher for ACs. In addition, storms characterized by low ensemble SD and predictability are found in regions of higher baroclinic instability than storms characterized by high predictability. There appears to be little, if any, relationship between latent heat release and precipitable water and predictability.

Funder

Office of Naval Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference116 articles.

1. On the existence of storm-tracks;Hoskins;J. Atmos. Sci.,1990

2. Atmospheric predictability as revealed by naturally occurring analogues;Lorenz;J. Atmos. Sci.,1969

3. Sea ice loss and Arctic cyclone activity from 1979 to 2014;Koyama;J. Climate,2017

4. Numerical simulation of an explosively deepening cyclone in the eastern Pacific;Kuo;Mon. Wea. Rev.,1988

5. A comparison of tracking methods for extreme cyclones in the Arctic basin;Simmonds;Tellus,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3