Causes and consequences of sea ice initialization shock in coupled NWP hindcasts with the GC2 climate model

Author:

Johns T. C.1,Blockley E. W.2,Ridley J. K.2

Affiliation:

1. 1 Met Office Hadley Centre, FitzRoy Road, Exeter, EX1 3PB, UK (Retired)

2. 2 Met Office Hadley Centre, FitzRoy Road, Exeter, EX1 3PB, UK

Abstract

AbstractWe present a coupled retrospective forecast (hindcast) study using the Met Office Global Coupled Model version 2 (GC2) in which we identify and mitigate causes of initialization shock that lead to rapid error growth in sea ice forecasts. Sea ice state variables and volume budget terms as a function of forecast lead time are evaluated relative to analyses from an uncoupled Met Office ocean-sea ice analysis system (FOAMv13). Two sources of initialization shock are highlighted and addressed, both of which are related to effective differences in physics between the analysis system and coupled forecast model. The primary shock to sea ice state variables arises from the use of a salinity-independent freezing temperature for sea water in GC2 as opposed to a salinity-dependent formulation in FOAMv13. A secondary effect arises from differences in the sea ice roughness and hence air-ice drag in the GC2 forecast model compared to the FOAMv13 analysis system. Generalizing from the findings of this study, we suggest that using non-native analyses as initial conditions for coupled Numerical Weather Prediction (NWP) studies will likely make them prone to initialization shock in some model components, to the detriment of forecast skill. To reduce the undesirable impacts of initialization shock on short-range forecast skill noted in this study we would therefore recommend the use of initial conditions (analyses) physically consistent with the native model components of the coupled forecast model, a native coupled analysis likely being the optimal initialization method.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3