Evaluating Convective Initiation in High-Resolution Numerical Weather Prediction Models Using GOES-16 Infrared Brightness Temperatures

Author:

Henderson David S.1,Otkin Jason A.2,Mecikalski John R.3

Affiliation:

1. a Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

2. b Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

3. c Atmospheric Sciences Department, University of Alabama in Huntsville, Huntsville, Alabama

Abstract

AbstractThe evolution of model-based cloud-top brightness temperatures (BT) associated with convective initiation (CI) is assessed for three bulk cloud microphysics schemes in the Weather Research and Forecasting Model. Using a composite-based analysis, cloud objects derived from high-resolution (500 m) model simulations are compared to 5-min GOES-16 imagery for a case study day located near the Alabama–Mississippi border. Observed and simulated cloud characteristics for clouds reaching CI are examined by utilizing infrared BTs commonly used in satellite-based CI nowcasting methods. The results demonstrate the ability of object-based verification methods with satellite observations to evaluate the evolution of model cloud characteristics, and the BT comparison provides insight into a known issue of model simulations producing too many convective cells reaching CI. The timing of CI from the different microphysical schemes is dependent on the production of ice in the upper levels of the cloud, which typically occurs near the time of maximum cloud growth. In particular, large differences in precipitation formation drive differences in the amount of cloud water able to reach upper layers of the cloud, which impacts cloud-top glaciation. Larger cloud mixing ratios are found in clouds with sustained growth leading to more cloud water lofted to the upper levels of the cloud and the formation of ice. Clouds unable to sustain growth lack the necessary cloud water needed to form ice and grow into cumulonimbus. Clouds with slower growth rates display similar BT trends as clouds exhibiting growth, which suggests that forecasting CI using geostationary satellites might require additional information beyond those derived at cloud top.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3