Choices in the Verification of S2S Forecasts and Their Implications for Climate Services

Author:

Manrique-Suñén Andrea1,Gonzalez-Reviriego Nube1,Torralba Verónica1,Cortesi Nicola1,Doblas-Reyes Francisco J.2

Affiliation:

1. Barcelona Supercomputing Center, Barcelona, Spain

2. Barcelona Supercomputing Center, and Institució Catalana de Recerca i Estudis Avanҫats, Barcelona, Spain

Abstract

AbstractSubseasonal predictions bridge the gap between medium-range weather forecasts and seasonal climate predictions. This time scale is crucial for operations and planning in many sectors such as energy and agriculture. For users to trust these predictions and efficiently make use of them in decision-making, the quality of predicted near-surface parameters needs to be systematically assessed. However, the method to follow in a probabilistic evaluation of subseasonal predictions is not trivial. This study aims to offer an illustration of the impact that the verification setup might have on the calculation of the skill scores, thus providing some guidelines for subseasonal forecast evaluation. For this, several forecast verification setups to calculate the fair ranked probability skill score for tercile categories have been designed. These setups use different number of samples to compute the fair RPSS as well as different ways to define the climatology, characterized by different time periods to average (week or month). These setups have been tested by evaluating 2-m temperature in ECMWF-Ext-ENS 20-yr hindcasts for all of the initializations in 2016 against the ERA-Interim reanalysis. Then, the implications on skill score values of each of the setups are analyzed. Results show that to obtain a robust skill score several start dates need to be employed. It is also shown that a constant monthly climatology over each calendar month may introduce spurious skill score associated with the seasonal cycle. A weekly climatology bears similar results to a monthly running-window climatology; however, the latter provides a better reference climatology when bias adjustment is applied.

Funder

Horizon 2020

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3