Observed Near-Surface Wind Structure in the Inner Core of Typhoon Goni (2015)

Author:

Mashiko Wataru1,Shimada Udai1

Affiliation:

1. Meteorological Research Institute, Tsukuba, Japan

Abstract

AbstractThe very strong Typhoon Goni passed over the Yaeyama Islands in southwestern Japan during the rapid intensification stage on August 23, 2015. Surface data collected by the dense network of weather stations as well as Doppler radar observations over the islands revealed a finescale structure in the inner core of the typhoon near the surface.Goni had a clear eye surrounded by a square-shaped eyewall with intense convection. The surface observations revealed that several vortices with a diameter of ~7–10 km accompanied by a pressure deficit were present inside the eye. From the Doppler velocity field, mesovortices approximately 10 km in diameter were found at the apexes of the square-shaped eyewall. These mesovortices and the inner rainbands emanating outward from the apexes of the polygonal eyewall generally exhibited features typical of vortex Rossby waves. The mesovortices were accompanied by a pressure deficit at the surface and enhanced surface winds. The data also indicated the first observational evidence of near-surface mixing between the eye and eyewall through the mesovortices, that is, the transport of high equivalent potential temperature in the eye toward the eyewall.The radar data revealed that many radar-reflectivity filaments that had a pleated shape with lengths of a few kilometers extended perpendicularly from the inner edge of the eyewall at low levels. The filaments associated with wind perturbations at low levels caused significant wind gusts accompanied by sudden pressure drops and shifts in wind direction at the surface.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3