An Information-Theoretic Approach to Reconciling Historical Climate Observations and Impacts on Agriculture

Author:

Mauerman Max1ORCID,Black Emily23,Boult Victoria L.23,Diro Rahel4,Osgood Dan1,Greatrex Helen567,Chillongo Thabbie8

Affiliation:

1. a International Research Institute for Climate and Society, Columbia University, New York, New York

2. b National Centre for Atmospheric Science, Leeds, United Kingdom

3. c Department of Meteorology, University of Reading, Reading, United Kingdom

4. d Tetra Tech, Pasadena, California

5. e Department of Geography, The Pennsylvania State University, University Park, Pennsylvania

6. f Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania

7. g Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, Pennsylvania

8. h Centre for Agricultural Research and Development, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi

Abstract

Abstract Decision-makers in climate risk management often face problems of how to reconcile diverse and conflicting sources of information about weather and its impact on human activity, such as when they are determining a quantitative threshold for when to act on satellite data. For this class of problems, it is important to quantitatively assess how severe a year was relative to other years, accounting for both the level of uncertainty among weather indicators and those indicators’ relationship to humanitarian consequences. We frame this assessment as the task of constructing a probability distribution for the relative severity of each year, incorporating both observational data—such as satellite measurements—and prior information on human impact—such as farmers’ reports—the latter of which may be incompletely measured or partially ordered. We present a simple, extensible statistical method to fit a probability distribution of relative severity to any ordinal data, using the principle of maximum entropy. We demonstrate the utility of the method through application to a weather index insurance project in Malawi, in which the model allows us to quantify the likelihood that satellites would correctly identify damaging drought events as reported by farmers, while accounting for uncertainty both within a set of commonly used satellite indicators and between those indicators and farmers’ ranking of the worst drought years. This approach has immediate utility in the design of weather-index insurance schemes and forecast-based action programs, such as assessing their degree of basis risk or determining the probable needs for postseason food assistance. Significance Statement We present a novel statistical method for synthesizing many indicators of drought into a probability distribution of how bad an agricultural season was likely to have been. This is important because climate risk analysts face problems of how to reconcile diverse and conflicting sources of information about drought—such as determining a quantitative threshold for when to act on satellite data, having only limited, ordinal information on past droughts to validate it. Our new method allows us to construct a probability distribution for the relative severity of a year, incorporating both kinds of data. This allows us to quantify the likelihood that satellites would have missed major humanitarian droughts due to, for example, mistimed observations or unobserved heterogeneity in impacts.

Funder

Natural Environment Research Council

Publisher

American Meteorological Society

Subject

Atmospheric Science,Social Sciences (miscellaneous),Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3