Thailand Daily Rainfall and Comparison with TRMM Products

Author:

Chokngamwong Roongroj1,Chiu Long S.2

Affiliation:

1. Center for Earth Observing and Space Research, George Mason University, Fairfax, Virginia

2. Center for Earth Observing and Space Research, George Mason University, Fairfax, Virginia, and Institute of Space and Earth Information Science, Chinese University of Hong Kong, Shatin, Hong Kong

Abstract

Abstract Daily rainfall data collected from more than 100 gauges over Thailand for the period 1993–2002 are used to study the climatology and spatial and temporal characteristics of Thailand rainfall variations. Comparison of the Thailand gauge (TG) data binned at 1° × 1° with the Global Precipitation Climatology Centre (GPCC) monitoring product shows a small bias (1.11%), and the differences can be reconciled in terms of the increased number of stations in the TG dataset. Comparison of daily TG with Tropical Rainfall Measuring Mission (TRMM) version 6 (V6) 3B42 rain estimates shows improvements over version 5 (V5) in terms of bias and mean absolute difference (MAD). The V5 is computed from the adjusted Geostationary Operational Environmental Satellite (GOES) precipitation index (AGPI) and V6 is computed using the TRMM Multisatellite Precipitation Analysis (TMPA) algorithm. The V6 histogram is much closer to that of TG than V5 in terms of rain fraction and conditional rain rates. Scatterplots show that both versions of the satellite products are deficient in capturing heavy rain events. In terms of detecting rain events, a critical success index (CSI) shows no difference between V6 and V5 3B42. The CSI for V6 is higher for the rainy season than the dry season. These results are generally insensitive to rain-rate threshold and averaging periods. The temporal and spatial autocorrelation of daily rain rates for TG, V6, and V5 3B42 are computed. Autocorrelation function analyses show improved temporal and spatial autocorrelations for V6 compared to TG over V5 with e-folding times of 1, 1, and 2 days, and isotropic spatial decorrelation distances of 1.14°, 1.87°, and 3.61° for TG, V6, and V5, respectively. Rain event statistics show that the V6 3B42 overestimates the rain event durations and underestimates the rain event separations and the event conditional rain rates when compared to TG. This study points to the need to further improve the 3B42 algorithm to lower the false detection rate and improve the estimation of heavy rainfall events.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3