Using Precipitation Observations in a Mesoscale Short-Range Ensemble Analysis and Forecasting System

Author:

Fujita Tadashi1,Stensrud David J.2,Dowell David C.3

Affiliation:

1. NOAA/National Severe Storms Laboratory, and Sasaki Institute, University of Oklahoma, Norman, Oklahoma, and Numerical Prediction Division, Japan Meteorological Agency, Tokyo, Japan

2. NOAA/National Severe Storms Laboratory, Norman, Oklahoma

3. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract A simple method to assimilate precipitation data from a synthesis of radar and gauge data is developed to operate alongside an ensemble Kalman filter that assimilates hourly surface observations. The mesoscale ensemble forecast system consists of 25 members with 30-km grid spacing and incorporates variability in both initial and boundary conditions and model physical process schemes. The precipitation assimilation method only incorporates information on when and where rainfall is observed. Model temperature and water vapor mixing ratio profiles at each grid point are modified if rainfall is observed but not predicted, or if rainfall is predicted but not observed. These modifications act to either increase or decrease, respectively, the likelihood that precipitation develops at that grid point. Two cases are examined in which this technique is applied to assimilate precipitation data every 15 min from 1200 to 1800 UTC, while hourly surface observations are also assimilated at the same time using the more sophisticated ensemble Kalman filter approach. Results show that the simple method for assimilating precipitation data helps the model develop precipitation where it is observed, resulting in the precipitation area being reproduced more accurately than in the run without precipitation-data assimilation, while not negatively influencing the positive results from the surface data assimilation. Improvement is also seen in the reliability of precipitation probabilities for a 1 mm h−1 threshold after the assimilation period, indicating that assimilating precipitation data may provide improved forecasts of the mesoscale environment for a few hours.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference71 articles.

1. Cluster analysis of multimodel ensemble data from SAMEX.;Alhamed;Mon. Wea. Rev.,2002

2. An ensemble adjustment Kalman filter for data assimilation.;Anderson;Mon. Wea. Rev.,2001

3. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts.;Anderson;Mon. Wea. Rev.,1999

4. The skill of ensemble prediction systems.;Atger;Mon. Wea. Rev.,1999

5. Baldwin, M. E., and K. E.Mitchell, 1997: The NCEP hourly multi-sensor U.S. precipitation analysis for operations and GCIP research. Preprints, 13th Conf. on Hydrology, Long Beach, CA, Amer. Meteor. Soc., 54–55.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3