Finite-Amplitude Baroclinic Instability of Time-Varying Abyssal Currents

Author:

Ha Seung-Ji1,Swaters Gordon E.1

Affiliation:

1. Applied Mathematics Institute, Department of Mathematical and Statistical Sciences, and Institute for Geophysical Research, University of Alberta, Edmonton, Alberta, Canada

Abstract

Abstract The weakly nonlinear baroclinic instability characteristics of time-varying grounded abyssal flow on sloping topography with dissipation are described. Specifically, the finite-amplitude evolution of marginally unstable or stable abyssal flow both at and removed from the point of marginal stability (i.e., the minimum shear required for instability) is determined. The equations governing the evolution of time-varying dissipative abyssal flow not at the point of marginal stability are identical to those previously obtained for the Phillips model for zonal flow on a β plane. The stability problem at the point of marginally stability is fully nonlinear at leading order. A wave packet model is introduced to examine the role of dissipation and time variability in the background abyssal current. This model is a generalization of one introduced for the baroclinic instability of zonal flow on a β plane. A spectral decomposition and truncation leads, in the absence of time variability in the background flow and dissipation, to the sine–Gordon solitary wave equation that has grounded abyssal soliton solutions. The modulation characteristics of the soliton are determined when the underlying abyssal current is marginally stable or unstable and possesses time variability and/or dissipation. The theory is illustrated with examples.

Publisher

American Meteorological Society

Subject

Oceanography

Reference43 articles.

1. Solitons and the Inverse Scattering Transform.;Ablowitz,1981

2. A new class of nonlinear waves in parallel flows.;Benney;Stud. Appl. Math.,1969

3. Amplitude vacillation on a beta-plane.;Boville;J. Atmos. Sci.,1981

4. Eddies southwest of Denmark Strait.;Bruce;Deep-Sea Res.,1995

5. Oceanic analogues of large scale atmospheric motions.;Charney,1981

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3