Parameterization for Cloud Longwave Scattering for Use in Atmospheric Models

Author:

Chou Ming-Dah1,Lee Kyu-Tae2,Tsay Si-Chee1,Fu Qiang3

Affiliation:

1. Laboratory for Atmospheres, NASA/Goddard Space Flight Center, Greenbelt, Maryland

2. Department of Atmospheric and Environmental Science, Kangnung National University, Kangnung, South Korea

3. Atmospheric Science Program, Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada

Abstract

Abstract A parameterization for the scattering of thermal infrared (longwave) radiation by clouds has been developed based on discrete-ordinate multiple-scattering calculations. The effect of backscattering is folded into the emission of an atmospheric layer and the absorption between levels by scaling the cloud optical thickness. The scaling is a function of the single-scattering albedo and asymmetry factor. For wide ranges of cloud particle size, optical thickness, height, and atmospheric conditions, flux errors induced by the parameterization are small. They are <4 W m−2 (2%) in the upward flux at the top of the atmosphere and <2 W m−2 (1%) in the downward flux at the surface. Compared to the case that scattering by clouds is neglected, the flux errors are more than a factor of 2 smaller. The maximum error in cooling rate is ≈8%, which occurs at the top of clouds, as well as at the base of high clouds where the difference between the cloud and surface temperatures is large. With the scaling approximation, radiative transfer equations for a cloudy atmosphere are identical with those for a clear atmosphere, and the difficulties in applying a multiple-scattering algorithm to a partly cloudy atmosphere (assuming homogeneous clouds) are avoided. The computational efficiency is practically the same as that for a clear atmosphere. The parameterization represents a significant reduction in one source of the errors involved in the calculation of longwave cooling in cloudy atmospheres.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference15 articles.

1. Anderson, G. P., S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, 1986: AFGL atmospheric constituent profiles (0–120 km). AFGL-TR-86-0110, 43 pp. [NTIS ADA175173.].

2. Cahalan, R. F., W. Ridgway, W. J. Wiscombe, and T. L. Bell, 1994: The albedo of stratocumulus clouds. J. Atmos. Sci., 51, 2434–2455.

3. Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, Vol. 3, 85 pp. [NTIS N95-15745.].

4. ——, W. Ridgway, and M. M.-H. Yan, 1993: One-parameter scaling and exponential-sum fitting for water vapor and CO2 infrared transmission functions. J. Atmos. Sci., 50, 2294–2303.

5. ——, M. J. Suarez, C.-H. Ho, M. M.-H. Yan, and K. T. Lee, 1998: Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulation and cloud ensemble models. J. Climate, 11, 201–214.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3