Verification of GCM-Generated Regional Seasonal Precipitation for Current Climate and of Statistical Downscaling Estimates under Changing Climate Conditions

Author:

Busuioc Aristita1,von Storch Hans2,Schnur Reiner2

Affiliation:

1. National Institute of Meteorology and Hydrology, Bucharest, Romania

2. Institute of Hydrophysics, GKSS Research Center, Geesthacht, Germany

Abstract

Abstract Empirical downscaling procedures relate large-scale atmospheric features with local features such as station rainfall in order to facilitate local scenarios of climate change. The purpose of the present paper is twofold: first, a downscaling technique is used as a diagnostic tool to verify the performance of climate models on the regional scale; second, a technique is proposed for verifying the validity of empirical downscaling procedures in climate change applications. The case considered is regional seasonal precipitation in Romania. The downscaling model is a regression based on canonical correlation analysis between observed station precipitation and European-scale sea level pressure (SLP). The climate models considered here are the T21 and T42 versions of the Hamburg ECHAM3 atmospheric GCM run in “time-slice” mode. The climate change scenario refers to the expected time of doubled carbon dioxide concentrations around the year 2050. The downscaling model is skillful for all seasons except spring. The general features of the large-scale SLP variability are reproduced fairly well by both GCMs in all seasons. The climate models reproduce the empirically determined precipitation–SLP link in winter, whereas the observed link is only partially captured for the other seasons. Thus, these models may be considered skillful with respect to regional precipitation during winter, and partially during the other seasons. Generally, applications of statistical downscaling to climate change scenarios have been based on the assumption that the empirical link between the large-scale and regional parameters remains valid under a changed climate. In this study, a rationale is proposed for this assumption by showing the consistency of the 2 × CO2 GCM scenarios in winter, derived directly from the gridpoint data, with the regional scenarios obtained through empirical downscaling. Since the skill of the GCMs in regional terms is already established, it is concluded that the downscaling technique is adequate for describing climatically changing regional and local conditions, at least for precipitation in Romania during winter.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference29 articles.

1. Barnett, T., and R. Preisendorfer, 1987: Origin and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis. Mon. Wea. Rev., 115, 1825–1850.

2. Bengtsson, L., M. Botzet, and M. Esch, 1995: Hurricane-type vortices in a general circulation model. Tellus, 47A, 175–196.

3. Bürger, G., 1996: Expanded downscaling for generating local weather scenarios. Climate Res., 7, 11–28.

4. Busuioc, A., 1994: The influence of the Carpathian mountains to the variability of the Romanian precipitation in wintertime. Ann. Meteor., 30, 247–250.

5. ——, and H. von Storch, 1995: The connection between summer precipitation anomalies in Romania and large-scale atmospheric circulation. Proc. Atmospheric Physics and Dynamics in the Analysis and Prognosis of Precipitation Fields, Rome, Italy, 369–373.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3