Evaluation of a Long-Term (1882–2005) Equivalent Temperature Time Series

Author:

Rogers Jeffrey C.1,Wang Sheng-Hung2,Coleman Jill S. M.3

Affiliation:

1. Department of Geography and Atmospheric Sciences Program, The Ohio State University, Columbus, Ohio

2. Polar Meteorology Group, Byrd Polar Research Center, The Ohio State University, Columbus, Ohio

3. Department of Geography, Ball State University, Muncie, Indiana

Abstract

Abstract A 124 (1882–2005) summer record of total surface energy content consisting of time series of surface equivalent temperature (TE) and its components T (mean air temperature) and Lq/cp (moist enthalpy, denoted Lq) is developed, quality controlled, and analyzed for Columbus, Ohio, where long records of monthly dewpoint temperature are available. The analysis shows that the highest TE occurs during the summer of 1995 when both T and Lq were very high, associated with a severe midwestern heat wave. That year contrasts with the hot summers of 1930–36, when Lq and TE had relatively low or negative anomalies (low humidity) compared to those of T. Following the 1930–36 summers, T and Lq departures are much more typically the same sign in individual summers, and the two parameters develop a statistically significant high positive correlation into the twenty-first century. Mean T and Lq departures from the long-term normal have opposite signs, however, when summers are stratified either by seasonal total rainfall amounts or by the Palmer drought severity soil moisture index. Normalized trends of T, Lq, and TE are downward from 1940 to 1964 with those of TE exceeding T. Since 1965, however, significant positive T trends slightly exceed TE in magnitude and those of dewpoint temperature and Lq are comparatively lower. A highly significant upward trend in minimum temperatures especially dominates the T variability, creating a significant downward trend in the temperature range that dominates recent summer climate variability more than moisture trends. Regional moisture flux variations are largest away from Columbus, over the upper Midwest and western Atlantic Ocean, during its seasonal extremes in total surface energy.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3