Characterizing the Effect of Vegetation Dynamics on the Bulk Heat Transfer Coefficient to Improve Variational Estimation of Surface Turbulent Fluxes

Author:

Abdolghafoorian Abedeh1,Farhadi Leila1,Bateni Sayed M.2,Margulis Steve3,Xu Tongren4

Affiliation:

1. Department of Civil and Environmental Engineering, George Washington University, Washington, D.C.

2. Department of Civil and Environmental Engineering, and Water Resources Research Center, University of Hawai‘i at Mānoa, Honolulu, Hawaii

3. Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, California

4. State Key Laboratory of Remote Sensing Science, Research Center for Remote Sensing and GIS, and School of Geography, Beijing Normal University, Beijing, China

Abstract

Abstract Estimation of turbulent heat fluxes by assimilating sequences of land surface temperature (LST) observations into a variational data assimilation (VDA) framework has been the subject of numerous studies. The VDA approaches are focused on the estimation of two key parameters that regulate the partitioning of available energy between sensible and latent heat fluxes. These parameters are neutral bulk heat transfer coefficient CHN and evaporative fraction (EF). The CHN mainly depends on the roughness of the surface and varies on the time scale of changing vegetation phenology. The existing VDA methods assumed that the variations in vegetation phenology over the period of one month are negligible and took CHN as a monthly constant parameter. However, during the growing season, bare soil may turn into a fully vegetated surface within a few weeks. Thus, assuming a constant CHN may result in a significant error in the estimation of surface fluxes, especially in regions with a high temporal variation in vegetation cover. In this study the VDA approach is advanced by taking CHN as a function of leaf area index (LAI). This allows the characterization of the dynamic effect of vegetation phenology on CHN. The performance of the new VDA model is tested over three sites in the United States and one site in China. The results show that the new model outperforms the previous one and reduces the root-mean-square error (and bias) in sensible and latent heat flux estimates across the four sites on average by 31% (61%) and 21% (37%), respectively.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3