Comparisons of Global Terrestrial Surface Water Datasets over 15 Years

Author:

Pham-Duc Binh1,Prigent Catherine2,Aires Filipe2,Papa Fabrice3

Affiliation:

1. Laboratoire d’Études du Rayonnement et de la Matière en Astrophysique et Atmosphères, CNRS, Observatoire de Paris, Paris, France, and Space and Aeronautics Department, University of Science and Technology of Hanoi, Hanoi, Vietnam

2. Laboratoire d’Études du Rayonnement et de la Matière en Astrophysique et Atmosphères, CNRS, Observatoire de Paris, Paris, France

3. LEGOS, Université de Toulouse, IRD, CNES, CNRS, UPS, Toulouse, France, and Indo-French Cell for Water Sciences, IRD-IISc-NIO-IITM, Indian Institute of Science, Bangalore, India

Abstract

Abstract Continental surface water extents and dynamics are key information to model Earth’s hydrological and biochemical cycles. This study presents global and regional comparisons between two multisatellite surface water extent datasets, the Global Inundation Extent from Multi-Satellites (GIEMS) and the Surface Water Microwave Product Series (SWAMPS), for the 1993–2007 period, along with two widely used static inundation datasets, the Global Lakes and Wetlands Database (GLWD) and the Matthews and Fung wetland estimates. Maximum surface water extents derived from these datasets are largely different: ~13 × 106 km2 from GLWD, ~5.3 × 106 km2 from Matthews and Fung, ~6.2 × 106 km2 from GIEMS, and ~10.3 × 106 km2 from SWAMPS. SWAMPS global maximum surface extent reduces by nearly 51% (to ~5 × 106 km2) when applying a coastal filter, showing a strong contamination in this retrieval over the coastal regions. Anomalous surface waters are also detected with SWAMPS over desert areas. The seasonal amplitude of the GIEMS surface waters is much larger than the SWAMPS estimates, and GIEMS dynamics is more consistent with other hydrological variables such as the river discharge. Over the Amazon basin, GIEMS and SWAMPS show a very high time series correlation (95%), but with SWAMPS maximum extent half the size of that from GIEMS and from previous synthetic aperture radar estimates. Over the Niger basin, SWAMPS seasonal cycle is out of phase with both GIEMS and MODIS-derived water extent estimates, as well as with river discharge data.

Funder

Vietnam International Education Development

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3