Predicting U.S. Drought Monitor States Using Precipitation, Soil Moisture, and Evapotranspiration Anomalies. Part I: Development of a Nondiscrete USDM Index

Author:

Lorenz David J.1,Otkin Jason A.2,Svoboda Mark3,Hain Christopher R.4,Anderson Martha C.5,Zhong Yafang2

Affiliation:

1. Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin

2. Space Science and Engineering Center, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

3. National Drought Mitigation Center, University of Nebraska–Lincoln, Lincoln, Nebraska

4. Earth Science Branch, NASA Marshall Space Flight Center, Huntsville, Alabama

5. Hydrology and Remote Sensing Laboratory, Agricultural Research Services, U.S. Department of Agriculture, Beltsville, Maryland

Abstract

Abstract The U.S. Drought Monitor (USDM) classifies drought into five discrete dryness/drought categories based on expert synthesis of numerous data sources. In this study, an empirical methodology is presented for creating a nondiscrete USDM index that simultaneously 1) represents the dryness/wetness value on a continuum and 2) is most consistent with the time scales and processes of the actual USDM. A continuous USDM representation will facilitate USDM forecasting methods, which will benefit from knowledge of where, within a discrete drought class, the current drought state most probably lies. The continuous USDM is developed such that the actual discrete USDM can be reconstructed by discretizing the continuous USDM based on the 30th, 20th, 10th, 5th, and 2nd percentiles—corresponding with USDM definitions for the D4–D0 drought classes. Anomalies in precipitation, soil moisture, and evapotranspiration over a range of different time scales are used as predictors to estimate the continuous USDM. The methodology is fundamentally probabilistic, meaning that the probability density function (PDF) of the continuous USDM is estimated and therefore the degree of uncertainty in the fit is properly characterized. Goodness-of-fit metrics and direct comparisons between the actual and predicted USDM analyses during different seasons and years indicate that this objective drought classification method is well correlated with the current USDM analyses. In Part II, this continuous USDM index will be used to improve intraseasonal USDM intensification forecasts because it is capable of distinguishing between USDM states that are either far from or near to the next-higher drought category.

Funder

NOAA Climate Program Office’s Modeling, Analysis, Predictions, and Projections (MAPP) program

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3