Affiliation:
1. Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, Colorado
2. Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado
Abstract
Abstract
Characterization of seasonal dynamics in wind speed attenuation within a plant canopy α is necessary for modeling leaf boundary layer conductance , canopy–atmosphere coupling Ω, and transpiration at multiple scales. The goals of this study were to characterize seasonal variation in α in four tree species with canopy wind profiles and a canopy-structure model, to quantify the impact of α on estimates of and Ω, and to determine the influence of variable wind speed on transpiration estimates from a biophysical model [Multi-Array Evaporation Stand Tree Radiation Assemblage (MAESTRA)]. Among species, α varied significantly with above-canopy wind speed and seasonal canopy development. At the mean above-canopy wind speed (1.5 m s−1), α could be predicted using a linear model with leaf area index as the input variable (coefficient of determination R2 = 0.78). However, the canopy-structure model yielded improved predictions (R2 = 0.92) by including canopy height and leaf width. By midseason, increasing canopy leaf area and α resulted in lower within-canopy wind speeds, a decrease in by 20%–50%, and a peak in Ω. Testing a discrete increase in wind speed (0.6–2.4 m s−1; seasonal mean plus/minus one standard deviation) had variable influence on transpiration estimates (from −30% to +20%), which correlated strongly with vapor pressure deficit (R2 = 0.83). Given the importance of α in accurate representation of , Ω, and transpiration, it is concluded that α needs to be given special attention in plant canopies that undergo substantial seasonal changes, especially densely foliated canopies (i.e., leaf area index >1) and in areas with lower native wind speeds (i.e., <2 m s−1).
Publisher
American Meteorological Society
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献