Multiyear Droughts and Pluvials over the Upper Colorado River Basin and Associated Circulations

Author:

Abatan Abayomi A.1,Gutowski William J.2,Ammann Caspar M.3,Kaatz Laurna4,Brown Barbara G.5,Buja Lawrence5,Bullock Randy5,Fowler Tressa5,Gilleland Eric5,Gotway John Halley5

Affiliation:

1. Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa, and Department of Meteorology and Climate Science, Federal University of Technology, Akure, Nigeria

2. Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

3. Research Applications Laboratory, National Center for Atmospheric Research,a Boulder, Colorado

4. Denver Water, Denver, Colorado

5. Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract This study analyzes spatial and temporal characteristics of multiyear droughts and pluvials over the southwestern United States with a focus on the upper Colorado River basin. The study uses two multiscalar moisture indices: standardized precipitation evapotranspiration index (SPEI) and standardized precipitation index (SPI) on a 36-month scale (SPEI36 and SPI36, respectively). The indices are calculated from monthly average precipitation and maximum and minimum temperatures from the Parameter-Elevation Regressions on Independent Slopes Model dataset for the period 1950–2012. The study examines the relationship between individual climate variables as well as large-scale atmospheric circulation features found in reanalysis output during drought and pluvial periods. The results indicate that SPEI36 and SPI36 show similar temporal and spatial patterns, but that the inclusion of temperatures in SPEI36 leads to more extreme magnitudes in SPEI36 than in SPI36. Analysis of large-scale atmospheric fields indicates an interplay between different fields that yields extremes over the study region. Widespread drought (pluvial) events are associated with enhanced positive (negative) 500-hPa geopotential height anomaly linked to subsidence (ascent) and negative (positive) moisture convergence and precipitable water anomalies. Considering the broader context of the conditions responsible for the occurrence of prolonged hydrologic anomalies provides water resource managers and other decision-makers with valuable understanding of these events. This perspective also offers evaluation opportunities for climate models.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3