An Axial-Flow Cyclone for Aircraft-Based Cloud Water Sampling

Author:

Straub Derek J.1,Collett Jeffrey L.1

Affiliation:

1. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Abstract

Abstract A new aircraft-based cloud water collection system has been developed to provide samples of cloud water for chemical analysis. The collection system makes use of centrifugal separation in an axial-flow cyclone to remove cloud drops from the airstream. An automated sample storage system allows up to seven independent samples to be obtained during a single research flight. The entire collection system is housed in a Particle Measurement Systems (PMS) canister to permit the collector to be used on a range of research aircraft without extensive modification to the collector or the aircraft structure. Computational fluid dynamics (CFD) analysis was used extensively throughout the development of the new collector for component design and to predict internal flow dynamics. CFD-based cloud drop trajectory simulations provided an estimate of collection efficiency as a function of drop size. Based on the numerical modeling, the 50% cut diameter was predicted to be 8 μm. Through a quantitative laboratory calibration using fluorescein-tagged monodisperse drops, CFD predictions of drop deposition patterns in the interior of the axial-flow cyclone were verified. The numerical and experimental evaluations were performed to ensure that the population of collected cloud drops is well characterized. Initial flight testing of the system occurred during the Dynamics and Chemistry of Marine Stratocumulus, Phase II (DYCOMS-II) field project in July 2001. Although the major components of the prototype collection system operated as expected during flight testing, sample collection rates were lower than expected because of the inefficient removal and storage of cloud water collected in the axial-flow cyclone. Actual sample collection rates ranged between 0.1 and 1.2 mL min−1.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference97 articles.

1. Transport and deposition of spherical particles and fibers in an improved virtual impactor.;Asgharian;Aerosol Sci. Technol,1997

2. Measurements of atmospheric gas-phase and aqueous phase hydrogen peroxide concentrations in winter on the east coast of the United States.;Barth;Tellus,1989

3. Cloud chemistry varies with drop size.;Bator;J. Geophys. Res,1997

4. Airborne measurements for cloud microphysics.;Baumgardner,1989

5. Status of in-situ microphysical measurements.;Baumgardner,1996

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3