Proactive Quality Control: Observing System Simulation Experiments with the Lorenz ’96 Model

Author:

Chen Tse-Chun1,Kalnay Eugenia1

Affiliation:

1. Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Abstract

Proactive quality control (PQC) is a fully flow-dependent QC for observations based on the ensemble forecast sensitivity to observations technique (EFSO). It aims at reducing the forecast skill dropout events suffered in operational numerical weather prediction by rejecting observations identified as detrimental by EFSO. Past studies show that individual dropout cases from the Global Forecast System (GFS) were significantly improved by noncycling PQC. In this paper, we perform for the first time cycling PQC experiments in a controlled environment with the Lorenz model to provide a systematic testing of the new method and possibly shed light on the optimal configuration of operational implementation. We compare several configurations and PQC update methods. It is found that PQC improvement is insensitive to the suboptimal configurations in DA, including ensemble size, observing network size, model error, and the length of DA window, but the improvements increase with the flaws in observations. More importantly, we show that PQC improves the analysis and forecast even in the absence of flawed observations. The study reveals that reusing the exact same Kalman gain matrix for PQC update not only provides the best result but requires the lowest computational cost among all the tested methods.

Funder

JPSS Proving Ground and Risk Reduction

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3