Improving Background Error Covariances in a 3D Ensemble–Variational Data Assimilation System for Regional NWP

Author:

Caron Jean-François1,Michel Yann2,Montmerle Thibaut2,Arbogast Étienne2

Affiliation:

1. Data Assimilation and Satellite Meteorology Research Section, Environment and Climate Change Canada, Dorval, Québec, Canada

2. Centre National de Recherches Météorologiques/Météo-France, Toulouse, France

Abstract

Following the recent development of a three-dimensional ensemble–variational (3DEnVar) data assimilation algorithm for the AROME-France NWP system, this paper examines different approaches to reduce the sampling noise in the ensemble-derived background error covariances in this new scheme without modifying the background ensemble generation strategy. We first examine two variants of scale-dependent localization: one method consists of applying different amounts of localization to different ranges of background error covariance spatial scales, while simultaneously assimilating all of the available observations. Another separate approach uses time-lagged forecasts in order to increase the effective ensemble size, up to a factor of 3 here. This approach of time-lagged forecasts is considered both on its own and together with scale-dependent localization. When the background error covariances are derived from the most recent 25-member ensemble forecasts, the results from data assimilation cycles over a 33-day winter period show that avoiding cross covariances between scales in the scale-dependent localization formulation first proposed by Buehner performs better than the more recent formulation of Buehner and Shlyaeva. However, when increasing the effective ensemble size to 75 members with time-lagged forecasts, the two scale-dependent formulations provide similar forecast improvements overall. It is also found that the lagged-members approach outperforms scale-dependent localization on its own. The largest forecast improvements are obtained when combining the two approaches.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3