Effects of Inclusion of Adjoint Sea Ice Rheology on Backward Sensitivity Evolution Examined Using an Adjoint Ocean–Sea Ice Model

Author:

Toyoda Takahiro1,Hirose Nariaki1,Urakawa L. Shogo1,Tsujino Hiroyuki1,Nakano Hideyuki1,Usui Norihisa1,Fujii Yosuke1,Sakamoto Kei1,Yamanaka Goro1

Affiliation:

1. Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan

Abstract

AbstractAs part of the ongoing development of an ocean data assimilation system for operational ocean monitoring and seasonal prediction, an adjoint sea ice model was developed that incorporates sea ice rheology, which was omitted from previously developed adjoint models to avoid model instability. The newly developed adjoint model was merged with the existing system to construct a global ocean–sea ice adjoint model. A series of sensitivity experiments, in which idealized initial values were given for the adjoint sea ice area fraction and thickness, were conducted, with particular attention to the differences between the cases with free-drift approximation in the adjoint sea ice model as in previous studies and with full sea ice dynamics including rheology. The internal stress effects represented in the adjoint rheology induced remarkable differences in the evolution of the initialized and generated adjoint variables, such as for the sea ice velocity by O(102) in magnitude, which highlighted the importance of the adjoint rheology in the central Arctic Ocean. In addition, sensitivities with respect to the nonprognostic variables associated with the sea ice dynamics were obtained only through the adjoint rheology. These results suggested a potential for providing an improved global atmosphere–ocean–sea ice state estimation through a four-dimensional variational approach with the adjoint sea ice model as developed in this study.

Funder

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3