Stability of Leapfrog Constant-Coefficients Semi-Implicit Schemes for the Fully Elastic System of Euler Equations: Case with Orography

Author:

Bénard P.1,Mašek J.2,Smolíková P.3

Affiliation:

1. Centre National de Recherches Météorologiques, Météo-France, Toulouse, France

2. Slovak Hydrometeorological Institute, Bratislava, Slovakia

3. Czech Hydrometeorological Institute, Prague, Czech Republic

Abstract

Abstract The stability of constant-coefficients semi-implicit schemes for the hydrostatic primitive equations and the fully elastic Euler equations in the presence of explicitly treated thermal residuals has been theoretically examined in the earlier literature, but only for the case of a flat terrain. This paper extends these analyses to a case in which an orography is present, in the shape of a uniform slope. It is shown, with mass-based coordinates, that for the Euler equations, the presence of a slope reduces furthermore the set of the prognostic variables that can be used in the vertical momentum equation to maintain the robustness of the scheme, compared to the case of a flat terrain. The situation appears to be similar for systems cast in mass-based and height-based vertical coordinates. Still for mass-based vertical coordinates, an optimal prognostic variable is proposed and is shown to result in a robustness similar to the one observed for the hydrostatic primitive equations system. The prognostic variables that lead to robust semi-implicit schemes share the property of having cumbersome evolution equations, and an alternative time treatment of some terms is then required to keep the evolution equation reasonably simple. This treatment is shown not to modify substantially the stability of the time scheme. This study finally indicates that with a pertinent choice for the prognostic variables, mass-based vertical coordinates are equally suitable as height-based coordinates for efficiently solving the compressible Euler equations system.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3