Microstructure Observations of Turbulent Heat Fluxes in a Warm-Core Canada Basin Eddy

Author:

Fine Elizabeth C.1,MacKinnon Jennifer A.1,Alford Matthew H.1,Mickett John B.2

Affiliation:

1. Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

2. Applied Physics Laboratory, University of Washington, Seattle, Washington

Abstract

AbstractAn intrahalocline eddy was observed on the Chukchi slope in September of 2015 using both towed CTD and microstructure temperature and shear sections. The core of the eddy was 6°C, significantly warmer than the surrounding −1°C water and far exceeding typical temperatures of warm-core Arctic eddies. Microstructure sections indicated that outside of the eddy the rate of dissipation of turbulent kinetic energy ε was quite low . However, at the edges of the eddy core, ε was elevated to . Three different processes were associated with elevated ε. Double-diffusive steps were found at the eddy’s top edge and were associated with an upward heat flux of 5 W m−2. At the bottom edge of the eddy, shear-driven mixing played a modest role, generating a heat flux of approximately 0.5 W m−2 downward. Along the sides of the eddy, density-compensated thermohaline intrusions transported heat laterally out of the eddy, with a horizontal heat flux of 2000 W m−2. Integrating these fluxes over an idealized approximation of the eddy’s shape, we estimate that the net heat transport due to thermohaline intrusions along the eddy flanks was 2 GW, while the double-diffusive flux above the eddy was 0.4 GW. Shear-driven mixing at the bottom of the eddy accounted for only 0.04 GW. If these processes continued indefinitely at the same rate, the estimated life-span would be 1–2 years. Such eddies may be an important mechanism for the transport of Pacific-origin heat, freshwater, and nutrients into the Canada Basin.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3