The Role of Horizontal Divergence in Submesoscale Frontogenesis

Author:

Barkan Roy1,Molemaker M. Jeroen2,Srinivasan Kaushik2,McWilliams James C.2,D’Asaro Eric A.3

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California, and Department of Geosciences, Tel Aviv University, Ramat Aviv, Israel

2. Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

3. Applied Physics Laboratory, University of Washington, Seattle, Washington

Abstract

AbstractOceanic surface submesoscale currents are characterized by anisotropic fronts and filaments with widths from 100 m to a few kilometers; an O(1) Rossby number; and large magnitudes of lateral buoyancy and velocity gradients, cyclonic vorticity, and convergence. We derive an asymptotic model of submeoscale frontogenesis—the rate of sharpening of submesoscale gradients—and show that in contrast with “classical” deformation frontogenesis, the near-surface convergent motions, which are associated with the ageostrophic secondary circulation, determine the gradient sharpening rates. Analytical solutions for the inviscid Lagrangian evolution of the gradient fields in the proposed asymptotic regime are provided, and emphasize the importance of ageostrophic motions in governing frontal evolution. These analytical solutions are further used to derive a scaling relation for the vertical buoyancy fluxes that accompany the gradient sharpening process. Realistic numerical simulations and drifter observations in the northern Gulf of Mexico during winter confirm the applicability of the asymptotic model to strong frontogenesis. Careful analysis of the numerical simulations and field measurements demonstrates that a subtle balance between boundary layer turbulence, pressure, and Coriolis effects (e.g., turbulent thermal wind; Gula et al. 2014) leads to the generation of the surface convergent motions that drive frontogenesis in this region. Because the asymptotic model makes no assumptions about the physical mechanisms that initiate the convergent frontogenetic motions, it is generic for submesoscale frontogenesis of O(1) Rossby number flows.

Funder

Gulf of Mexico Research Initiative

Office of Naval Research Global

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3