Balanced Contribution to the Intensification of a Tropical Cyclone Simulated in TCM4: Outer-Core Spinup Process*

Author:

Fudeyasu Hironori1,Wang Yuqing1

Affiliation:

1. International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii

Abstract

Abstract The balanced contribution to the intensification of a tropical cyclone simulated in the three-dimensional, nonhydrostatic, full-physics tropical cyclone model version 4 (TCM4), in particular the spinup of the outer-core circulation, is investigated by solving the Sawyer–Eliassen equation and by computing terms in the azimuthal-mean tangential wind tendency equation. Results demonstrate that the azimuthal-mean secondary circulation (radial and vertical circulation) and the spinup of the midtropospheric outer-core circulation in the simulated tropical cyclone are well captured by balance dynamics. The midtropospheric inflow develops in response to diabatic heating in mid–upper-tropospheric stratiform (anvil) clouds outside the eyewall in active spiral rainbands and transports absolute angular momentum inward to spin up the outer-core circulation. Although the azimuthal-mean diabatic heating rate in the eyewall is the largest, its contribution to radial winds and thus the spinup of outer-core circulation in the middle troposphere is rather weak. This is because the high inertial stability in the inner-core region resists the radial inflow in the middle troposphere, limiting the inward transport of absolute angular momentum. The result thus suggests that diabatic heating in spiral rainbands is the key to the continued growth of the storm-scale circulation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference39 articles.

1. Mesoscale and convective structure of a hurricane rainband.;Barnes;J. Atmos. Sci.,1983

2. Balanced and unbalanced aspects of tropical cyclone intensification.;Bui;Quart. J. Roy. Meteor. Soc.,2009

3. Variability of the outer wind profiles of western North Pacific typhoons: Classifications and techniques for analysis and forecasting.;Cocks;Mon. Wea. Rev.,2002

4. Slow thermally or frictionally controlled meridional circulation in a circular vortex.;Eliassen;Astrophys. Norv.,1952

5. Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm.;Fairall;J. Climate,2003

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3