Simulations of Subtropical Cyclones in a Baroclinic Channel Model

Author:

Davis Christopher A.1

Affiliation:

1. National Center for Atmospheric Research,* Boulder, Colorado

Abstract

Abstract The present study considers a variety of cyclone developments that occur in an idealized, baroclinic channel model featuring full condensation heating effects over an ocean with prescribed sea surface temperature variation. The geostrophic basic-state jet is specified by the tropopause shape, and horizontal shear is included by specifying the meridional variation of zonal wind on the lower boundary. The horizontal shear induces anticyclonic wave breaking of baroclinic waves. Normal mode perturbations are computed using a “fake-dry” version of the model but integrated forward using full physics. Low-latitude moist convection is particularly strong in simulations with strong surface easterlies that destabilize the troposphere through water vapor fluxes from the ocean surface. Deep convection produces a locally elevated dynamic tropopause and an associated anticyclone. This modified zonal flow supports moist baroclinic instability. The resulting cyclones, identified as subtropical cyclones, occur in deep westerly vertical wind shear but are nearly devoid of lower-tropospheric baroclinicity initially. These systems are distinguished from baroclinically dominated secondary cyclones that also form at relatively low latitudes in the simulations. For weak jets and strong subtropical surface easterlies, subtropical cyclone development dominates formation on the midlatitude jet. For strong westerly jets or weak horizontal shear, the situation is reversed and the midlatitude baroclinic wave can help or hinder the ultimate intensification of the subtropical cyclone. The similarity of this cross-latitude influence to the extratropical transition of tropical cyclones is noted.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference40 articles.

1. Synoptic–Dynamic Meteorology in Midlatitudes.;Bluestein,1992

2. Baroclinic instability and the short wavelength cut-off in terms of potential vorticity.;Bretherton;Quart. J. Roy. Meteor. Soc.,1966

3. Mesoscale convective vortex formation in a weakly sheared moist neutral environment.;Conzemius;J. Atmos. Sci.,2007

4. Kona storms.;Daingerfield;Mon. Wea. Rev.,1921

5. The palette of fronts and cyclones within a baroclinic wave development.;Davies;J. Atmos. Sci.,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3