Southerly Surges on Submonthly Time Scales over the Eastern Indian Ocean during the Southern Hemisphere Winter

Author:

Fukutomi Yoshiki1,Yasunari Tetsuzo2

Affiliation:

1. Frontier Research Center for Global Change, JAMSTEC, Yokohama, Japan

2. Hydrospheric Atmospheric Research Center, Nagoya University, Nagoya, and Frontier Research Center for Global Change, JAMSTEC, Yokohama, Japan

Abstract

Abstract Meridional wind surges from the extratropics into the Tropics strongly regulate tropical convective activity. This paper confirms that extratropical forcing manifested as a meridional surge does modulate the tropical atmosphere over the eastern Indian Ocean, and it describes the tropical–extratropical connection in the region. Surges in the lower atmosphere on submonthly (6–25 days) time scales over the eastern Indian Ocean were examined in tandem with associated tropical convection and large-scale atmospheric fields during the Southern Hemisphere (SH) winter (June–August). Data used in this study are NCEP-2 reanalyses and daily NOAA/Climate Diagnostics Center (CDC) outgoing longwave radiation (OLR) data for 23 yr, from 1979 to 2001. A low-level surge index was calculated using the 850-hPa meridional wind component (υ) averaged over a region where sub–monthly scale υ variance shows a local maximum (17.5°–2.5°S, 87.5°–97.5°E). The surge index defines 62 different surge events. Composites of various components were generated based on the index to define relationships between surge events and large-scale fields. Low-level southerly surges over the eastern Indian Ocean originate from midlatitude Rossby waves with strong baroclinic development in the entrance region of a subtropical jet core off Australia’s west coast. Strengthened low-level wind surges cause cross-equatorial flow stretching from the subtropical eastern Indian Ocean to the southern Bay of Bengal. Surges are accompanied by the advection of cold, dry air from midlatitudes into the Tropics. A cold and dry front develops at the leading surge edge during the surge period. Two to four days later, as the surge peaks, negative OLR anomalies develop near the key region. The OLR anomalies indicate a local blow up of convection over the tropical eastern Indian Ocean. Convection reflects increased instability in the surge region, which is caused by low-level dry air advection and near-surface moistening that is forced by enhanced sea surface evaporation associated with the surge. The southerly surge on submonthly time scales is an important bridge linking the Tropics and midlatitudes over the Indian Ocean.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3