Affiliation:
1. National Center for Atmospheric Research,* Boulder, Colorado
Abstract
Abstract
The climate sensitivity of the Community Climate System Model (CCSM) is described in terms of the equilibrium change in surface temperature due to a doubling of carbon dioxide in a slab ocean version of the Community Atmosphere Model (CAM) and the transient climate response, which is the surface temperature change at the point of doubling of carbon dioxide in a 1% yr−1 CO2 simulation with the fully coupled CCSM. For a fixed atmospheric horizontal resolution across model versions, we show that the equilibrium sensitivity has monotonically increased across CSM1.4, CCSM2, to CCSM3 from 2.01° to 2.27° to 2.47°C, respectively. The transient climate response for these versions is 1.44° to 1.09° to 1.48°C, respectively.
Using climate feedback analysis, it is shown that both clear-sky and cloudy-sky processes have contributed to the changes in transient climate response. The dependence of these sensitivities on horizontal resolution is also explored. The equilibrium sensitivity of the high-resolution (T85) version of CCSM3 is 2.71°C, while the equilibrium response for the low-resolution model (T31) is 2.32°C. It is shown that the shortwave cloud response of the high-resolution version of the CCSM3 is anomalous compared to the low- and moderate-resolution versions.
Publisher
American Meteorological Society
Cited by
150 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献