Seasonal Variability of Teleconnection Patterns

Author:

Frederiksen Jorgen S.1,Branstator Grant2

Affiliation:

1. CSIRO Atmospheric Research, Victoria, Australia

2. National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract The seasonal variability of 300-hPa global streamfunction fields taken from a 40-yr period of reanalyzed observations starting on 1 January 1958 and from long 497- and 900-yr general circulation model (GCM) datasets forced by sea surface temperatures (SSTs) is examined and analyzed in terms of empirical orthogonal functions (EOFs), principal oscillation patterns (POPs), and particularly finite-time principal oscillation patterns (FTPOPs). The FTPOPs are the eigenvectors of the propagator, over a 1-yr period covering the annual cycle, that has been constructed by fitting a linear stochastic model with a time-dependent matrix operator to atmospheric fluctuations based on the daily or twice-daily 300-hPa streamfunction datasets. The leading FTPOPs are large-scale teleconnection patterns and by construction they are the empirical analogs of finite-time normal modes (FTNMs) of linear instability theory. Hence, by comparing FTPOPs to FTNMs, the study provides insight into the ability of linear theory to explain seasonal and intraseasonal variability in the structure and growth rates of large-scale disturbances. The study finds that the leading FTPOP teleconnection patterns have similar seasonal cycles of relative growth rates and amplitudes to the leading FTNMs of the barotropic vorticity equation with 300-hPa basic states that change with the annual cycle; the largest amplitudes of both theoretical and empirical modes occur in late boreal winter or early spring, and minimum amplitudes in boreal autumn, with the GCM-based FTPOPs having additional secondary maxima in early boreal summer. In each month, there are leading POPs and EOFs that closely resemble the leading FTPOPs. Also, the growth rates of leading FTNMs and FTPOPs during each season are generally similar to those of respective leading normal modes and POPs calculated for that season. Thus the perturbations are reacting to the seasonally varying basic state faster than the state is changing and this appears to explain why linear planetary wave models with time-independent basic states can be useful. Nevertheless, intermodal interference effects, as well as intramodal interference effects, between the eastward and westward propagating components of single traveling modes, can play important roles in the evolution of FTPOPs and FTNMs, particularly in boreal spring. This study has examined the roles of internal instability and interannual SST variability in the behavior of leading FTPOPs and has also used comparisons of FTPOPs and FTNMs for GCM simulations with and without interannually varying SSTs to assess the role of internal instability and SST variations in organizing interannual atmospheric variability. The comparison indicates that both factors are significant. The results found here also support a close relationship between the boreal spring predictability barrier of some models of climate prediction over the tropical Pacific Ocean and the amplitudes of large-scale instabilities and teleconnection patterns of the atmospheric circulation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3