How Total Precipitable Water Vapor Anomalies Relate to Cloud Vertical Structure

Author:

Forsythe John M.1,Dodson Jason B.2,Partain Philip T.1,Kidder Stanley Q.1,Vonder Haar Thomas H.1

Affiliation:

1. Cooperative Institute for Research in the Atmosphere, Fort Collins, Colorado

2. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Abstract

Abstract The NOAA operational total precipitable water (TPW) anomaly product is available to forecasters to display percentage of normal TPW in real time for applications like heavy precipitation forecasts. In this work, the TPW anomaly is compared to multilayer cloud frequency and vertical structure. The hypothesis is tested that the TPW anomaly is reflective of changes in cloud vertical distribution, and that anomalously moist atmospheres have more and deeper clouds, while dry atmospheres have fewer and thinner clouds. Cloud vertical occurrence profiles from the CloudSat 94-GHz radar and the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) are composited according to TPW anomaly for summer and winter from 2007 to 2010. Three geographic regions are examined: the North Pacific (NPAC), the tropical east Pacific (Niño), and the Mississippi Valley (MSVL), which is a land-only region. Cloud likelihood increases as TPW anomaly values increase beyond 100% over MSVL and Niño. Over NPAC, shallow boundary layer cloud occurrence is not a function of TPW anomaly, while high clouds and deep clouds throughout the troposphere are more likely at higher TPW anomalies. In the Niño region, boundary layer clouds grow vertically as the TPW anomaly increases, and the anomaly range is smaller than in the midlatitudes. In summer, the MSVL region resembles Niño, but boundary layer clouds are observed less frequently than expected. The wintertime MSVL results do not show any compelling relationship, perhaps because of the difficulties in computing TPW anomaly in a very dry atmosphere.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3