Some Observational Evidence for Dry Soils Supporting Enhanced Relative Humidity at the Convective Boundary Layer Top

Author:

Westra D.1,Steeneveld G. J.1,Holtslag A. A. M.1

Affiliation:

1. Meteorology and Air Quality Section, Wageningen University, Wageningen, Netherlands

Abstract

Abstract The tendency of the relative humidity at the top of a clear convective boundary layer (RHtop) is studied as an indicator of cloud formation over a semiarid region within the conceptual framework introduced by Ek and Holtslag. Typically the tendency of RHtop increases if the evaporative fraction at the land surface increases, which supports boundary layer moistening but only when boundary layer growth is limited by atmospheric factors. This regime was supported by Cabauw observations in the original study. Here, new observational evidence that the tendency of RHtop can also increase as the surface becomes more dry, as is consistent with another regime of the conceptual framework, is provided. The observations used are from the African Monsoon Multidisciplinary Analyses (AMMA) intensive observational campaign near Niamey, Niger, 20–25 June 2006. In addition, the authors evaluate whether various versions of the Weather Research and Forecasting single-column model confirm the different regimes of the conceptual framework for a typical day in the AMMA campaign. It appears that the model confirms that dryer soils can support cloud formation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3