The Electrical Structure of Two Supercell Storms during STEPS

Author:

MacGorman Donald R.1,Rust W. David1,Krehbiel Paul2,Rison William2,Bruning Eric3,Wiens Kyle4

Affiliation:

1. NOAA/National Severe Storms Laboratory, and Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma

2. New Mexico Institute of Mining and Technology, Socorro, New Mexico

3. Cooperative Institute for Mesoscale Meteorological Studies, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

4. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Abstract

Abstract Balloon soundings were made through two supercell storms during the Severe Thunderstorm Electrification and Precipitation Study (STEPS) in summer 2000. Instruments measured the vector electric field, temperature, pressure, relative humidity, and balloon location. For the first time, soundings penetrated both the strong updraft and the rainy downdraft region of the same supercell storm. In both storms, the strong updraft had fewer vertically separated charge regions than found near the rainy downdraft, and the updraft’s lowest charge was elevated higher, its bottom being near the 40-dBZ boundary of the weak-echo vault. The simpler, elevated charge structure is consistent with the noninductive graupel–ice mechanism dominating charge generation in updrafts. In the weak-echo vault, the amount of frozen precipitation and the time for particle interactions are too small for significant charging. Inductive charging mechanisms and lightning may contribute to the additional charge regions found at lower altitudes outside the updraft. Lightning mapping showed that the in-cloud channels of a positive ground flash could be in any one of the three vertically separated positive charge regions found outside the updraft, but were in the middle region, at 6–8 km MSL, for most positive ground flashes. The observations are consistent with the electrical structure of these storms having been inverted in polarity from that of most storms elsewhere. It is hypothesized that the observed inverted-polarity cloud flashes and positive ground flashes were caused by inverted-polarity storm structure, possibly due to a larger than usual rime accretion rate for graupel in a strong updraft.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3