Detecting and Classifying Events in Noisy Time Series

Author:

Kang Yanfei1,Belušić Danijel1,Smith-Miles Kate1

Affiliation:

1. School of Mathematical Sciences, Monash University, Melbourne, Victoria, Australia

Abstract

Abstract Time series are characterized by a myriad of different shapes and structures. A number of events that appear in atmospheric time series result from as yet unidentified physical mechanisms. This is particularly the case for stable boundary layers, where the usual statistical turbulence approaches do not work well and increasing evidence relates the bulk of their dynamics to generally unknown individual events. This study explores the possibility of extracting and classifying events from time series without previous knowledge of their generating mechanisms. The goal is to group large numbers of events in a useful way that will open a pathway for the detailed study of their characteristics, and help to gain understanding of events with previously unknown origin. A two-step method is developed that extracts events from background fluctuations and groups dynamically similar events into clusters. The method is tested on artificial time series with different levels of complexity and on atmospheric turbulence time series. The results indicate that the method successfully recognizes and classifies various events of unknown origin and even distinguishes different physical characteristics based only on a single-variable time series. The method is simple and highly flexible, and it does not assume any knowledge about the shape geometries, amplitudes, or underlying physical mechanisms. Therefore, with proper modifications, it can be applied to time series from a wider range of research areas.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3