Affiliation:
1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
2. Department of Mechanical Engineering, University of Melbourne, Melbourne, Victoria, Australia
Abstract
Abstract
The buoyancy-adjusted stretched-vortex subgrid-scale (SGS) model is assessed for a number of large-eddy simulations (LESs) corresponding to diverse atmospheric boundary layer conditions. The cases considered are free convection, a moderately stable boundary layer [first Global Energy and Water Exchanges (GEWEX) Atmospheric Boundary Layer Study (GABLS)] case, shallow cumulus [Barbados Oceanographic and Meteorological Experiment (BOMEX)], shallow precipitating cumulus [Rain in Cumulus over the Ocean (RICO)] and nocturnal stratocumulus [Second Dynamics and Chemistry of the Marine Stratocumulus (DYCOMS-II) field study RF01]. An identical LES setup, including advection discretization and SGS model parameters, is used for all cases, which is a stringent test on the ability of LES to accurately capture diverse conditions without any flow-adjustable parameters. The LES predictions agree well with observations and previously reported model results. A grid-resolution convergence study is carried out, and for all cases the mean profiles exhibit good grid-resolution independence, even for resolutions that are typically considered coarse. Second-order statistics, for example, variances, converge at finer resolutions compared to domain means. The simulations show that 90% of the turbulent kinetic energy (at each level) must be resolved to obtain sufficiently converged mean profiles. This empirical convergence criterion can be used as a guide in designing future LES runs.
Publisher
American Meteorological Society
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献