Occurrence of Winter Stratospheric Sudden Warming Events and the Seasonal Timing of Spring Stratospheric Final Warming

Author:

Hu Jinggao1,Ren Rongcai1,Xu Haiming2

Affiliation:

1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters and KLME, Nanjing University of Information Science and Technology, Nanjing, China

2. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters and KLME, Nanjing University of Information Science and Technology, Nanjing, China

Abstract

Abstract Based on the NCEP–NCAR reanalysis dataset covering 1958–2012, this paper demonstrates a statistically significant relationship between the occurrence of major stratospheric sudden warming events (SSWs) in midwinter and the seasonal timing of stratospheric final warming events (SFWs) in spring. Specifically, early spring SFWs that on average occur in early March tend to be preceded by non-SSW winters, while late spring SFWs that on average take place up until early May are mostly preceded by SSW events in midwinter. Though the occurrence (absence) of SSW events in midwinter may not always be followed by late (early) SFWs in spring, there is a much higher (lower) probability of late SFWs than early SFWs in spring after SSW (non-SSW) winters, particularly when the winter SSWs occur no earlier than early January or in the period from late January to early February. Diagnosis shows that, corresponding to an SSW (non-SSW) winter and the following late (early)-SFW spring, intensity of planetary wave activity in the stratosphere tends to evolve out of phase from midwinter to the following spring, being anomalously stronger (weaker) in winter and anomalously weaker (stronger) in spring. Furthermore, the strengthening of the western Eurasian high, which appears during early to mid-January in late-SFW years but does not appear until late February to mid-March in early-SFW years, always precedes the strengthening of planetary wave activity in the stratosphere and thus acts as a tropospheric precursor to the seasonal timing of SFWs.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3