Affiliation:
1. Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin
2. Space Science and Engineering Center, and Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin
Abstract
Abstract
The first observationally based near-global shallow cumuliform snowfall census is undertaken using multiyear CloudSat Cloud Profiling Radar observations. CloudSat snowfall observations and snowfall rate estimates from the CloudSat 2C-Snow Water Content and Snowfall Rate (2C-SNOW-PROFILE) product are partitioned between shallow cumuliform and nimbostratus cloud structures by utilizing coincident cloud category classifications from the CloudSat 2B-Cloud Scenario Classification (2B-CLDCLASS) product. Shallow cumuliform (nimbostratus) snowfall events comprise about 36% (59%) of snowfall events in the CloudSat snowfall dataset. The remaining 5% of snowfall events are distributed between other categories. Distinct oceanic versus continental trends exist between the two major snowfall categories, as shallow cumuliform snow-producing clouds occur predominantly over the oceans. Regional differences are also noted in the partitioned dataset, with over-ocean regions near Greenland, the far North Atlantic Ocean, the Barents Sea, the western Pacific Ocean, the southern Bering Sea, and the Southern Hemispheric pan-oceanic region containing distinct shallow snowfall occurrence maxima exceeding 60%. Certain Northern Hemispheric continental regions also experience frequent shallow cumuliform snowfall events (e.g., inland Russia), as well as some mountainous regions. CloudSat-generated snowfall rates are also partitioned between the two major snowfall categories to illustrate the importance of shallow snow-producing cloud structures to the average annual snowfall. While shallow cumuliform snowfall produces over 50% of the annual estimated surface snowfall flux regionally, about 18% (82%) of global snowfall is attributed to shallow (nimbostratus) snowfall. This foundational spaceborne snowfall study will be utilized for follow-on evaluative studies with independent model, reanalysis, and ground-based observational datasets to characterize respective dataset biases and to better quantify CloudSat snowfall detection and quantitative snowfall estimate uncertainties.
Publisher
American Meteorological Society
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献