Filtering Partially Observed Multiscale Systems with Heterogeneous Multiscale Methods–Based Reduced Climate Models

Author:

Kang Emily L.1,Harlim John2

Affiliation:

1. Statistical and Applied Mathematical Sciences Institute, Research Triangle Park, North Carolina

2. Department of Mathematics, North Carolina State University, Raleigh, North Carolina

Abstract

Abstract This paper presents a fast reduced filtering strategy for assimilating multiscale systems in the presence of observations of only the macroscopic (or large scale) variables. This reduced filtering strategy introduces model errors in estimating the prior forecast statistics through the (heterogeneous multiscale methods) HMM-based reduced climate model as an alternative to the standard expensive (direct numerical simulation) DNS-based fully resolved model. More importantly, this approach is not restricted to any analysis (or Bayesian updating) step from various ensemble-based filters. In a regime where there is a distinctive separation of scales, high filtering skill is obtained through applying the HMM alone with any desirable analysis step from ensemble Kalman filters. When separation of scales is not apparent as typically observed in geophysical turbulent systems, an additional procedure is proposed to reinitialize the microscopic variables to statistically reflect pseudo-observations that are constructed based on the unbiased estimates of the macroscopic variables. Specifically, these pseudo-observations are constructed offline from the conditional distributions of the microscopic forcing to the macroscopic dynamics given the macroscopic variables with the method-of-moments estimator. This HMM-based filter is comparable to the more expensive standard DNS-based filter on a stringent test bed, the two-layer Lorenz’96 model, in various regimes of scale gap, including the not so apparent one. This high filtering skill is robust in the presence of additional model errors through inconsistent pseudo-observations and even when macroscopic observations are spatially incomplete.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference32 articles.

1. An ensemble adjustment Kalman filter for data assimilation;Anderson;Mon. Wea. Rev.,2001

2. A local least squares framework for ensemble filtering;Anderson;Mon. Wea. Rev.,2003

3. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects;Bishop;Mon. Wea. Rev.,2001

4. Statistical Inference;Casella,2002

5. Dimensional reduction for a Bayesian filter;Chorin;Proc. Natl. Acad. Sci. USA,2004

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3