The Characteristics of Numerically Simulated Supercell Storms Situated over Statically Stable Boundary Layers

Author:

Nowotarski Christopher J.1,Markowski Paul M.1,Richardson Yvette P.1

Affiliation:

1. Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Abstract

Abstract This paper uses idealized numerical simulations to investigate the dynamical influences of stable boundary layers on the morphology of supercell thunderstorms, especially the development of low-level rotation. Simulations are initialized in a horizontally homogeneous environment with a surface-based stable layer similar to that found within a nocturnal boundary layer or a mesoscale cold pool. The depth and lapse rate of the imposed stable boundary layer, which together control the convective inhibition (CIN), are varied in a suite of experiments. When compared with a control simulation having little surface-based CIN, each supercell simulated in an environment having a stable boundary layer develops weaker rotation, updrafts, and downdrafts at low levels; in general, low-level vertical vorticity and vertical velocity magnitude decrease as initial CIN increases (changes in CIN are due only to variations in the imposed stable boundary layer). Though the presence of a stable boundary layer decreases low-level updraft strength, all supercells except those initiated over the most stable boundary layers had at least some updraft parcels with near-surface origins. Furthermore, the existence of a stable boundary layer only prohibits downdraft parcels from reaching the lowest grid level in the most stable cases. Trajectory and circulation analyses indicate that weaker near-surface rotation in the stable-layer scenarios is a result of the decreased generation of circulation coupled with decreased convergence of the near-surface circulation by weaker low-level updrafts. These results may also suggest a reason why tornadogenesis is less likely to occur in so-called elevated supercell thunderstorms than in surface-based supercells.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3