Intermediate-Depth Circulation of the Indian and South Pacific Oceans Measured by Autonomous Floats

Author:

Davis Russ E.1

Affiliation:

1. Scripps Institution of Oceanography, La Jolla, California

Abstract

Abstract As part of the World Ocean Circulation Experiment, 306 autonomous floats were deployed in the tropical and South Pacific Ocean and 228 were deployed in the Indian Ocean to observe the basinwide circulation near 900-m depth. Mean velocities, seasonal variability, and lateral eddy diffusivity from the resultant 2583 float-years of data are presented. Area averages, local function fits, and a novel application of objective mapping are used to estimate the mean circulation. Patterns of mean circulation resemble those at the surface in both basins. Well-developed subtropical gyres, twice as strong in the Indian Ocean as in the Pacific, feed western boundary currents. Tropical gyres are separated by eastward flow along the equator in both hemispheres of both basins, although the Indian subcontinent splits the north Indian tropical gyre. The Antarctic Circumpolar Current (ACC) and west wind drifts are prominent in both basins, generally tending slightly southward but deviating to the north behind the Del Cano, Kerguelen, and Campbell Plateaus and, of course, South America. Remarkably, the eastern boundaries of the southern subtropical gyres in all three basins apparently occur in the ocean interior, away from land. The Indian Ocean’s subtropical gyre, and perhaps part of the South Atlantic’s, reaches east to a retroflection just upstream of the Campbell Plateau south of New Zealand. Seasonal variability at 900 m is focused around the equator with weaker variability found near certain bathymetric features. There is a remarkable agreement between the observed seasonable variability and that predicted by the Jet Propulsion Laboratory (JPL)–Estimating the Circulation and Climate of the Ocean (ECCO) data-assimilating numerical model. Aside from seasonal effects, eddy variability is greatest along the equator, in tropical and subtropical western basins, and along the ACC. Integrals of velocity across regional passages (Tasman Sea, Mozambique Channel) provide useful reference for hydrographic analyses of transport. Across whole ocean basins, however, the uncertainty associated with the appropriate continuity relation for horizontal flow (e.g., geostrophy vs nondivergence) is comparable to the mean flow.

Publisher

American Meteorological Society

Subject

Oceanography

Reference31 articles.

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3