Mechanisms of the Great Plains Low-Level Jet as Simulated in an AGCM

Author:

Jiang Xianan1,Lau Ngar-Cheung2,Held Isaac M.2,Ploshay Jeffrey J.2

Affiliation:

1. Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

2. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey

Abstract

Abstract A model diagnosis has been performed on the nocturnal Great Plains low-level jet (LLJ), which is one of the key elements of the warm season regional climate over North America. The horizontal–vertical structure, diurnal phase, and amplitude of the LLJ are well simulated by an atmospheric general circulation model (AGCM), thus justifying a reevaluation of the physical mechanisms for the formation of the LLJ based on output from this model. A diagnosis of the AGCM data confirms that two planetary boundary layer (PBL) processes, the diurnal oscillation of the pressure gradient force and of vertical diffusion, are of comparable importance in regulating the inertial oscillation of the winds, which leads to the occurrence of maximum LLJ strength during nighttime. These two processes are highlighted in the theories for the LLJ proposed by Holton (1967) and Blackadar (1957). A simple model is constructed in order to study the relative roles of these two mechanisms. This model incorporates the diurnal variation of the pressure gradient force and vertical diffusion coefficients as obtained from the AGCM simulation. The results reveal that the observed diurnal phase and amplitude of the LLJ can be attributed to the combination of these two mechanisms. The LLJ generated by either Holton’s or Blackadar’s mechanism alone is characterized by an unrealistic meridional phase shift and weaker amplitude. It is also shown that the diurnal phase of the LLJ exhibits vertical variations in the PBL, more clearly at higher latitudes, with the upper PBL wind attaining a southerly peak several hours earlier than the lower PBL. The simple model demonstrates that this phase tilt is due mainly to sequential triggering of the inertial oscillation from upper to lower PBL when surface cooling commences after sunset. At lower latitudes, due to the change of orientation of prevailing mean wind vectors and the longer inertial period, the inertial oscillation in the lower PBL tends to be interrupted by strong vertical mixing in the following day, whereas in the upper PBL, the inertial oscillation can proceed in a low-friction environment for a relatively longer duration. Thus, the vertical phase tilt initiated at sunset is less evident at lower latitudes.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3