Comparison of Integrated Multisatellite Retrievals for GPM (IMERG) and TRMM Multisatellite Precipitation Analysis (TMPA) Monthly Precipitation Products: Initial Results

Author:

Liu Zhong1

Affiliation:

1. Center for Spatial Information Science and Systems, George Mason University, Fairfax, Virginia

Abstract

Abstract Launched on 27 February 2014, the Global Precipitation Measurement (GPM) mission comprises an international constellation of satellites to provide the next generation of global observations of precipitation. Built upon the success of the widely used TRMM Multisatellite Precipitation Analysis (TMPA) products, the Integrated Multisatellite Retrievals for GPM (IMERG) products continue to make improvements in areas such as spatial and temporal resolutions and snowfall estimates, etc., which will be valuable for research and applications. During the transition from TMPA to IMERG, characterizing the differences between these two product suites is important in order for users to make adjustments in research and applications accordingly. In this study, the newly released IMERG Final Run monthly product is compared with the TMPA monthly product (3B43) in the boreal summer of 2014 and the boreal winter of 2014/15 on a global scale. The results show the IMERG monthly product can capture major heavy precipitation regions in the Northern and Southern Hemispheres reasonably well. Differences between IMERG and 3B43 vary with surface types and precipitation rates in both seasons. Over land, systematic differences are much smaller compared to those over ocean because of the similar gauge adjustment used in the two monthly products. Positive relative differences (IMERG > 3B43) are primarily found at low precipitation rates and negative differences (IMERG < 3B43) at high precipitation rates. Over ocean, negative systematic differences (IMERG < 3B43) prevail at all precipitation rates. Analysis of the passive microwave (PMW) and infrared (IR) monthly products from TMPA and IMERG shows the large systematic differences in the tropical oceans are closely associated with the differences in the PMW products.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3