Affiliation:
1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
2. NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
Abstract
Abstract
A recently implemented operational quantitative precipitation estimation (QPE) product, the Multi-Radar Multi-Sensor (MRMS) radar-only QPE (Q3RAD), mosaicked dual-polarization QPE, and National Centers for Environmental Prediction (NCEP) stage II QPE were evaluated for nine cool season precipitation events east of the Rockies. These automated, radar-only products were compared with the forecaster quality-controlled NCEP stage IV product, which was considered as the benchmark for QPE. Community Collaborative Rain, Hail and Snow Network (CoCoRaHS) 24-h accumulation data were used to evaluate product performance while hourly automated gauge data (quality controlled) were used for spatial and time series analysis. Statistical analysis indicated all three radar-only products had a distinct underestimate bias, likely due to the radar beam partially or completely overshooting the predominantly shallow winter precipitation systems. While the forecaster quality-controlled NCEP stage IV estimates had the best overall performance, Q3RAD had the next best performance, which was significant as Q3RAD is available in real time whereas NCEP stage IV estimates are not. Stage II estimates exhibited a distinct tendency to underestimate gauge totals while dual-polarization estimates exhibited significant errors related to melting layer challenges.
Publisher
American Meteorological Society
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献