MRMS QPE Performance during the 2013/14 Cool Season

Author:

Cocks Stephen B.1,Martinaitis Steven M.1,Kaney Brian1,Zhang Jian2,Howard Kenneth2

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

2. NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract A recently implemented operational quantitative precipitation estimation (QPE) product, the Multi-Radar Multi-Sensor (MRMS) radar-only QPE (Q3RAD), mosaicked dual-polarization QPE, and National Centers for Environmental Prediction (NCEP) stage II QPE were evaluated for nine cool season precipitation events east of the Rockies. These automated, radar-only products were compared with the forecaster quality-controlled NCEP stage IV product, which was considered as the benchmark for QPE. Community Collaborative Rain, Hail and Snow Network (CoCoRaHS) 24-h accumulation data were used to evaluate product performance while hourly automated gauge data (quality controlled) were used for spatial and time series analysis. Statistical analysis indicated all three radar-only products had a distinct underestimate bias, likely due to the radar beam partially or completely overshooting the predominantly shallow winter precipitation systems. While the forecaster quality-controlled NCEP stage IV estimates had the best overall performance, Q3RAD had the next best performance, which was significant as Q3RAD is available in real time whereas NCEP stage IV estimates are not. Stage II estimates exhibited a distinct tendency to underestimate gauge totals while dual-polarization estimates exhibited significant errors related to melting layer challenges.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference32 articles.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3