The Evaporative Demand Drought Index. Part I: Linking Drought Evolution to Variations in Evaporative Demand

Author:

Hobbins Michael T.12,Wood Andrew3,McEvoy Daniel J.4,Huntington Justin L.4,Morton Charles4,Anderson Martha5,Hain Christopher6

Affiliation:

1. Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

2. NOAA/Earth Systems Research Laboratory/Physical Sciences Division, Boulder, Colorado

3. National Center for Atmospheric Research, Boulder, Colorado

4. Desert Research Institute, Reno, Nevada

5. Hydrology and Remote Sensing Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland

6. Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Abstract

Abstract Many operational drought indices focus primarily on precipitation and temperature when depicting hydroclimatic anomalies, and this perspective can be augmented by analyses and products that reflect the evaporative dynamics of drought. The linkage between atmospheric evaporative demand E0 and actual evapotranspiration (ET) is leveraged in a new drought index based solely on E0—the Evaporative Demand Drought Index (EDDI). EDDI measures the signal of drought through the response of E0 to surface drying anomalies that result from two distinct land surface–atmosphere interactions: 1) a complementary relationship between E0 and ET that develops under moisture limitations at the land surface, leading to ET declining and increasing E0, as in sustained droughts, and 2) parallel ET and E0 increases arising from increased energy availability that lead to surface moisture limitations, as in flash droughts. To calculate EDDI from E0, a long-term, daily reanalysis of reference ET estimated from the American Society of Civil Engineers (ASCE) standardized reference ET equation using radiation and meteorological variables from the North American Land Data Assimilation System phase 2 (NLDAS-2) is used. EDDI is obtained by deriving empirical probabilities of aggregated E0 depths relative to their climatologic means across a user-specific time period and normalizing these probabilities. Positive EDDI values then indicate drier-than-normal conditions and the potential for drought. EDDI is a physically based, multiscalar drought index that that can serve as an indicator of both flash and sustained droughts, in some hydroclimates offering early warning relative to current operational drought indices. The performance of EDDI is assessed against other commonly used drought metrics across CONUS in Part II.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference43 articles.

Cited by 236 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3