Impact of Model Relative Accuracy in Framework of Rescaling Observations in Hydrological Data Assimilation Studies

Author:

Yilmaz M. T.1,Crow W. T.2,Ryu D.3

Affiliation:

1. Civil Engineering Department, Middle East Technical University, Ankara, Turkey

2. Hydrology and Remote Sensing Laboratory, U.S. Department of Agriculture, Beltsville, Maryland

3. Department of Infrastructure Engineering, University of Melbourne, Parkville, Victoria, Australia

Abstract

Abstract Soil moisture datasets vary greatly with respect to their time series variability and signal-to-noise characteristics. Minimizing differences in signal variances is particularly important in data assimilation to optimize the accuracy of the analysis obtained after merging model and observation datasets. Strategies that reduce these differences are typically based on rescaling the observation time series to match the model. As a result, the impact of the relative accuracy of the model reference dataset is often neglected. In this study, the impacts of the relative accuracies of model- and observation-based soil moisture time series—for seasonal and subseasonal (anomaly) components, respectively—on optimal model–observation integration are investigated. Experiments are performed using both well-controlled synthetic and real data test beds. Investigated experiments are based on rescaling observations to a model using strategies with decreasing aggressiveness: 1) using the seasonality of the model directly while matching the variance of the observed anomaly component, 2) rescaling the seasonality and the anomaly components separately, and 3) rescaling the entire time series as one piece or for each monthly climatology. All experiments use a simple antecedent precipitation index model and assimilate observations via a Kalman filtering approach. Synthetic and real data assimilation results demonstrate that rescaling observations more aggressively to the model is favorable when the model is more skillful than observations; however, rescaling observations more aggressively to the model can degrade the Kalman filter analysis if observations are relatively more accurate.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3