Development of an Aerosol Retrieval Method: Description and Preliminary Tests

Author:

Carrió G. G.1,Cotton W. R.1,Zupanski D.2,Zupanski M.2

Affiliation:

1. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

2. Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Abstract

Abstract A cloud-nucleating aerosol retrieval method was developed. It allows the estimation of ice-forming nuclei and cloud condensation nuclei (IFN and CCN) for regions in which boundary layer clouds prevail. The method is based on the assumption that the periodical assimilation of observations into a microscale model leads to an improved estimation of the model state vector (that contains the cloud-nucleating aerosol concentrations). The Colorado State University Cloud Resolving Model (CRM) version of the Regional Atmospheric Modeling System (RAMS@CSU) and the maximum likelihood ensemble filter algorithm (MLEF) were used as the forecast model and the assimilation algorithm, respectively. On the one hand, the microphysical modules of this CRM explicitly consider the nucleation of IFN, CCN, and giant CCN. On the other hand, the MLEF provides an important advantage because it is defined to address highly nonlinear problems, employing an iterative minimization of a cost function. This paper explores the possibility of using an assimilation technique with microscale models. These initial series of experiments focused on isolating the model response and showed that data assimilation enhanced its performance in simulating a mixed-phase Arctic boundary layer cloud. Moreover, the coupled model was successful in reproducing the presence of an observed polluted air mass above the inversion.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3